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This paper reports the generation of interesting viscous fingering patterns in a variable Hele-Shaw cell using
a non-Newtonian paint as the displaced fluid. Patterns with infinite and finite ratios of viscosity between the
displaced and displacing fluids are produced. We find a qualitative difference between the patterns generated in
the two cases. However, displaced fluids of different viscosity generate similar patterns, as long as the viscosity
ratio is kept infinite. The infinite ratio of the viscosity of the two fluids produces a paint pattern that exhibits
fractal nature. The fractal pattern resembles very much the simulated river basin boundary geometry, which
earlier workers have shown to emerge from a minimum energy dissipation principle.
@S1063-651X~96!04611-9#

PACS number~s!: 47.50.1d, 47.20.2k, 68.10.2m

I. INTRODUCTION

The phenomenon known as viscous fingering~VF!, where
a fluid of lower viscosity~fluid 2! displaces a fluid of higher
viscosity ~fluid 1! under pressure, can produce interesting
fractal patterns. Fractal growth phenomena and pattern for-
mation appear to be characteristics of many natural processes
such as dielectric breakdown, electrochemical deposition,
and river network formation@1–3#.

A standard apparatus for studying VF is the Hele-Shaw
cell. This is an arrangement of two parallel plates separated
by a distance of the order of 1 mm, with fluid 1 confined
between the plates. Fluid 2 is injected either from one side of
a rectangular cell or through a hole at the center of one of the
circular plates.

The VF patterns generated in the latter case exhibit radial
symmetry. Fractal nature in the patterns is observed in cer-
tain length scales, when the two fluids are immiscible@4# or
when the fluids are miscible but fluid 1 is non-Newtonian in
nature@5#.

Another simple method for producing interesting VF pat-
terns is to pull apart two plates with a layer of highly viscous
paint sandwiched in between. The surrounding air enters the
paint in the form of fingers, producing ultimately a charac-
teristic treelike pattern of paint on both the plates. This is the
‘‘figure ground’’ @6# of the complementary VF patterns pro-
duced by air. A number of such experiments have already
been reported@7–10#. This is referred to as VF in the vari-
able Hele-Shaw cell~VHSC!.

The theoretical analysis of structure and stability of a
single viscous finger has made steady progress@11,12#, but
an analysis of the pattern as a whole produced by the com-
petition and interaction of a large number of fingers growing
simultaneously is yet to emerge. In this paper we report some
works that are expected to be useful for understanding such
problems.

To produce a permanent pattern in the VHSC, we use
paint as fluid 1. In Sec. II we shall discuss our experimental
study, which consists of two parts. In Sec. II A we generate
VF patterns, varying the viscosity of the fluid 1 by diluting it

with linseed oil in different ratios, fluid 2 being air. In Sec.
II B, in a second set of experiments we change the viscosity
ratio between fluids 1 and 2 using glycerine as fluid 2. A
qualitative explanation for the differences in the patterns is
offered in Sec. III. In Sec. IV we discuss the construction of
an idealized pattern from the photographs of the real VF
patterns and show that it is remarkably similar to simulated
river networks@13# that are based on a minimum energy
dissipation principle. We summarize in Sec. V.

II. EXPERIMENTAL STUDY OF THE PATTERNS

A. Set 1

We press two glass slides together with a drop of paint in
between. The paint spreads out to form a thin layer having an
almost circular boundary. The slides are now separated
manually keeping them parallel as far as possible. The undi-
luted paint is a highly viscous non-Newtonian fluid~Camlin
Students oil paint, cadmium yellow! as reported earlier@10#.
We now repeat the experiment diluting the paint with linseed
oil in different ratios. Figure 1 shows patterns for paint-to-oil
ratios 1:0.0 and 1:1.8. The viscosityh of the paint-oil mix-
ture vs the velocity gradientD is shown for different dilu-
tions in Fig. 2.

As dilution increases the tree patterns formed by the oil-
paint mixtures become broader compared to the undiluted
paint pattern. The relative area occupied by the paint in-
creases with dilution. However, the overall appearance re-
mains the same, branching angles and the average number of
fingers meeting at the center remaining more or less unaf-
fected.

The characteristic features of VF patterns depend more on
the viscosity ratio between fluid 1 and fluid 2 than the abso-
lute coefficient of viscosity of one component@14#. So the
overall similarity in set-1 patterns is quite expected. The
paint is diluted with linseed oil of viscosityh533.1 cp at
30 °C, so the effective viscosity is still very large compared
to air (h;0).

B. Set 2

To observe the effect of a finite viscosity ratio, we under-
take a second set of experiments where fluid 2 is glycerine,
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h5629 cp at 30 °C, and fluid 1 is undiluted paint. The pro-
cedure now is simply to separate the glass slides submerged
in a trough filled with glycerine.

We find that under glycerine, the glass slides cannot be
separated manually while keeping them parallel, the force
required being very large. So a slightly different procedure is
adopted. The upper slide is replaced by a circular cover slip
and the lifting is done by inserting a pin at the edge of the
cover slip as in our previous report@10#. The patterns are
shown in Fig. 3, which include, for comparison, the undi-
luted paint–air pattern generated by an exactly similar lifting
process.

In the case of a finite viscosity ratio the patterns are quali-
tatively different. The glycerine fingers grow almost parallel
and there is very little branching in the tree pattern, unlike
the paint-air situation.

III. QUALITATIVE EXPLANATION
OF THE DIFFERENT VF PATTERNS

The schematic diagrams of the initial random fluctuations
and the three types of patterns obtained for pure paint and

air, diluted paint and air, and pure paint and glycerine are
shown in Figs. 4~a!–4~d!. We suggest a qualitative explana-
tion for the differences observed. A linear geometry is
shown, valid at the periphery of any of our patterns. An
initial random fluctuation is shown in Fig. 4~a!. This may be
due to unevenness of the surface or thermal fluctuation.

When air enters at a constant pressurePo at the periphery
we assume a constant lower pressureP, well within the paint
@Fig. 4~b!#. Now the pressure gradient at the tip of a longer
air finger is larger than that at the tip of a shorter finger@2#.
According to Darcy’s law, the velocity is proportional to the
pressure gradient, so a longer finger moves more rapidly than
a shorter finger. The air spreads out forward as well as lat-
erally since fluid 1 is of much higher viscosity and so pres-
sure cannot transmit fast through it and the lateral growth of
a longer finger continues until pressure in the adjacent longer
finger balances, as shown in Fig. 4~b!.

In Fig. 4~c! fluid 1 is diluted paint and the situation is
similar to the previous one. The only difference is that fluid
1 is less viscous than in the previous case, pressure is trans-
mitted through it faster, and the lateral pressure in the adja-
cent longer finger balances it faster than in the earlier situa-
tion, resulting in a thicker wall of paint between two air
fingers.

In Fig. 4~d! the fluid 2 is also of finite viscosity and hence
pressure inside the glycerine finger is not constant atPo but
decreases with distancel from the periphery. We assume a
linear fall in pressure, i.e.,P ~at l )5Po2 l¹P, where
¹P5(Po2P)/L. Then the pressure gradient at pointA, the

FIG. 1. Two patterns generated in set-1 experiments~a! with
undiluted paint and~b! with a paint-to-oil ratio 1:1.8. The branches
of the tree pattern of paint in~a! are elevated as they reach the
center, which is evident from the shadow, while the branches in~b!
widen.

FIG. 2. Plot of viscosity of the paint-oil mixture,h vs shear rate
D for a paint-to-oil ratio~a! 1:0 by volume and~b! 1:1.8 by volume.
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tip of a longer finger, and that atB, the tip of a shorter finger,
will be equal since

¹PA5@Po2~L2x1!¹P2P#/x1

5¹PB5@Po2~L2x2!¹P2P#/x2 . ~1!

This indicates that in spite of differences in the length of
glycerine fingers at the initial stage, all of them proceed with
the same velocity, remaining almost parallel to each other.

IV. SIMILARITY TO SIMULATED RIVER PATTERNS

Sun, Meakin, and Jossang simulate a river network@13#
on a rectangular island surrounded by the sea, using the
minimum energy dissipation principle. A triangular lattice is
superposed on the island and a unit precipitation on each
lattice site is assumed with the condition that the river net-
work transports the total precipitation from the island to the
sea. Each site on the boundary of the lattice has a possibility
of being a channel network outlet. The entire area from
which water drains out through a single site on the boundary
constitutes a basin. So each basin contains a single river with
tributaries.

In our set-1 experiments air enters through the boundary
of a circular area displacing a uniform distribution of paint
over the area. Ultimately, when the slides are separated air is
distributed uniformly over the entire area with a tree pattern
of paint, which separates different air fingers. So the process
is just the reverse of the river network formation. A single air
finger corresponds to a single river network and the paint
pattern corresponds to the basin boundary pattern. Experi-
mentally obtained tree patterns show a striking similarity to
the basin boundary geometry@Fig. 4~d! in @13##. To see the
resemblance, the branches formed inside the tree pattern that
do not reach the boundary must be excluded. Both exhibit a
loopless fractal nature on certain length scales@13,10#. The
average number of air fingers meeting at the center of the VF
pattern is more or less the same as the number of large basins
joined together at the center of the island.

To bring out the similarity and analyze the VF patterns in
detail we construct an idealized hexagonal model of the tree
pattern on a triangular lattice, as shown in Fig. 5. The model
is based on some statistical data of the real VF patterns,
namely, the average number of air fingers ultimately reach-
ing the center, the hierarchical structure of air fingers, and
the equal width of air fingers at the boundary and equal
branching angles. Only the side branching and tip splitting of
the air fingers are ignored.

The cumulative distribution of air finger area, as in Fig. 5,
follows a power law

N~A.A* !}A2b, ~2!

with b5 1
2. N(A.A* ) is the number of air fingers of area

greater thanA* . The value of the exponentb is the same as
the exponent (t21) given in Ref.@13#. This is also expected
from the simple scaling argument@13# as the air fingers in
VF patterns are compact in nature.

According to Sun, Meakin, and Jossang, energy dissipa-
tion at i th link,

Pi}LiQi
a , ~3!

whereLi is the length of thei th link andQi is the amount of
water flow at thei th link anda5 1

2. We assume that the same
relationship holds for the reverse case, i.e., energy dissipa-
tion for drawing air inside is also proportional toQi

1/2, Qi

representing the amount of air drawn inside, and hence the
model pattern can also be obtained using the relation~3! and
minimizing P5(Pi , the total energy dissipation.

The study of the branching structure of a single tree re-
veals that sidebranching is preferred to tip splitting for air

FIG. 3. Two patterns generated in set-2 experiments. Displacing
fluids are~a! glycerine and~b! air, respectively. Displaced fluid is
undiluted paint in both cases.
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fingers~the typical nature of tributaries of a single river net-
work is similar!. To reveal the significance of the exponent
a and relate it to the branching structure of each tree, we
show explicitly how relation~3! works in a small air ‘‘ba-
sin’’ of the model tree pattern. The air enters through any
one of the two lattice sites, at which the basin opens at the
boundary, and the amount of air is measured by the number
of lattice sites within the small basin selected. We impose the
condition that the final distribution of air will be such that at
each lattice site there will be one ‘‘unit’’ of air. No backward
movement of air is allowed. Using these conditions, all pos-
sible air flow paths within the basin and the corresponding
energy dissipation are calculated.

The minimum energy dissipation corresponds to the path
shown in Fig. 6~a!. Figure 6~b! shows another path with
higher dissipation energy. These two air flow paths indicate
that the tree pattern that obeys minimum-energy dissipation
principle is really generated by sidebranching rather than tip
splitting of air finger, as also observed in the real VF pat-
terns. Fractional values ofa,1 signify that air prefers to
flow together as far as possible. It is to be noted that the
paths in Figs. 6~a! and 6~b! give the sameP for a51. In this
case it is immaterial whether or not the fluid units flow to-

gether. Each unit tries to minimize its path independently.
On the other hand,a50 implies that the total length of the
pattern should be minimized. We propose that, in our prob-
lem, the viscosity ratio and the interfacial tension between
fluids 1 and 2 determinea. The two extreme limitsa50 and
1, correspond, respectively, to the cases where only interfa-
cial tension controls the flow of air and the situation when
viscous force plays the dominating role. The actual pattern
arises from the interplay of these two competing forces, giv-
ing an intermediate fractional value ofa.

V. CONCLUSION

To summarize, we have seen the effect of varying the
viscosity of fluid 1 and the viscosity ratio between fluids 1
and 2, on the VF patterns in a VHSC. We have also observed
the similarity in patterns generated in our set-1 experiments
with another natural process: river network formation. The
last part leads to the question whether natural processes ex-
hibit self-organization according to some global energy-
minimization principle@15#. The VHSC would be a conve-
nient model for probing this question further.

Another theoretical work, by Sarkar@16#, suggests an ide-
alized radial VF pattern in conventional Hele-Shaw cells for
immiscible fluids. The suggested pattern is complementary

FIG. 4. Schematic diagram of~a! an initial
random fluctuation at the two-fluid interface in a
linear Hele-Shaw cell of lengthL, ~b! growth of
large air fingers suppressing some other fingers in
the forward and lateral directions through undi-
luted paint,~c! growth of almost all air fingers
through diluted paint, and~d! growth of parallel
glycerine fingers in the forward direction through
undiluted paint.

FIG. 5. Idealized hexagonal model of the tree pattern obtained
in set-1 experiments with undiluted paint.

FIG. 6. Air flow path within a small air ‘‘basin’’ of the model
tree pattern. Path~a! corresponds to the minimum value ofP and
path ~b! gives the same(LiQi as ~a!, but P is higher than in~a!.
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to ours. He used an effective-medium approximation to ex-
plain the scaling behavior in the patterns.

We plan to generate the whole tree pattern through com-
puter simulation and investigate thoroughly the dependence
of a on the surface tension and viscosity through experi-
ments and theory. Another aspect of our experiment that re-
quires analysis is the effect of the non-Newtonian nature of
fluid 1 on the VF patterns; we plan to study this in detail.
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